This function allows to perform PCA.

mR_pca(
  mRList = NULL,
  dirout = NULL,
  col_by = "class",
  method = "svd",
  scaling = c("none", "pareto", "vector", "uv"),
  center = TRUE,
  include_QC = TRUE,
  top = Inf,
  nPcs = 2,
  ...
)

Arguments

mRList

mRList object

dirout

output directory

col_by

(default class)

method

see pcaMethods::pca()

scaling

see pcaMethods::prep()

center

whether to center the data or not

include_QC

(default TRUE)

top

only the top most varying features will be used

nPcs

number of principal components

...

further argments to pcaMethods::pca()

Value

mRList object with "pca" element. Images of screeplot and pairs, table of score,loading and variance can be saved if write_output=TRUE.